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Abstract INPET

L)

In this paper we study a generalized second order resonance-tunneling

ordinary differential equation, (z + ir) 0"(z) + a '(z) -( - z62 2 )(z) = 0,

where the parameter a is real and positive, a > 0, and all other parameters

are complex. We have obtained solutions of this equation when the independ-

ent variable covers the infinite domain, -- < z < -, and making use of suit-

able integral representations we have determined their asymptotic expansions.

With the aid of their leading terms the two transmission-reflection problems

have been solved. Thus, we show that the expected Budden absorption occurs

for a = 2N, N = 0, 1, 2,.... However, in bands centered about a = 2N + 1, the

modulus of the reflection coefficient is generally larger than unity.

PACS: 03.40.Kf, 02.90.+p, 42.10.-s



%. Introduction

In a brief paper in Physical Review Letters1 we announced the preparation

of a lengthier publication containing rigorous proofs of the outlined results.

Thus, the present paper is meant to serve the indicated purpose. It is well

known that the propagation of waves through nonuniform media has been the

subject of broad interest and study in various areas of basic and applied

physics. We wish to emphasize the two physical effects encountered in such

cases; namely, the appearance of cutoffs, i.e., points where the local wave-

number vanishes [k(z) = 01, and resonance points where short wavelengths

develop [(k(z) + ]. In general, we expect cutoffs to result in wave reflec-

tion, while resonances lead to wave absorption. Because of the seemingly

opposite roles played by cutoffs and resonances, it is of considerable

importance to investigate model systems in which both effects are present

simultaneously and in a sense compete with each other; this is the essence of

resonance-tunneling problems. The prototype equation used to approximate

physical systems exhibiting such features is Budden's equation.2 This second

order differential equation describes systems in which propagation regions

exist on both sides of a resonance, but in which one of the propagation

regions also contains a cutoff. An intrinsic property of Budden's equation is

the fact that, for waves approaching the resonance (z = 0) from the cutott

side (z > 0), the modulus of the reflection coefficient is less than unity.

Such a result is consistent with the intuitive expectation than a fraction of

the incident wave is absorbed at the resonance, while yet another portion can

tunnel to the propagation region on the other side (z < i). The converse sit-

uation corresponds to a wave approaching the resonance from the lett (z < U)

and a portion of which is transmitted to the other side (z ' 0), where the

cutoff exists, while there is no retLection at all. In neither case is the

*1
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initial wave energy conserved in Budden's problem as well as in our general-

ized version.

One important feature of Budden's equation is the absence of a tirst

derivative term. In this paper we have generalized the resonance-tunneling

problem by inserting, in the differential equation, a first derivative

multiplied by an adjustable parameter a which is real and positive, a > 0.
4.

When we put a = 0 we recover Budden's equation. We have further generalized

the problem by allowing the presence of dissipation, with the result that all

other parameters in the equation, as well as the independent variable, become

complex numbers. We have solved the generalized equation in detail and

discovered that, as function of the parameter a, the reflection coefficient

exhibits an anomalous behavior; namely, that the expected Budden absorption

occurs for a = 2N, N = 0, 1, 2,..., and that in bands centered about a =

2N + 1, the modulus of the reflection coefficient can be larger than unity.

Initially, our motivation for the study of the generalized equation arose

from a specific problem 3 (electrostatic whistler waves in magnetized plasmas

with longitudinal density gradients), but having encountered the extraordinary

reflection phenomena described above, we proceeded to carry out a detailed

analysis of the solutions of the generalized equation which we present in this

paper. Thus, in Section 2 we present the basic differential equation, and

then obtain a fundamental set of solutions. In Section 3 we take up the role

of Whittaker's equation to study its behavior close to the resonance (z = 0)

and to investigate, for a > 0, the small argument leading terms of the

solutions of the generalized equation. In Section 4 we set tip integral

representations for the solutions of our basic differential equation. In

Section 5 we compute and tabulate their asymptotic leading terms, which we

need in Section 6 to compute the transmission and reflection coefticients.
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2. Basic Differential Equation

As explained in the Introduction we obtain our basic difterential equa-

tion by inserting in Budden's equation a first derivative term. Thus, we have

(z + i') ,"(z) + aLb'(z) - - zB2
2)4(z) = U (2.1)

which reproduces Eq. (1) of Ref. 1. In (2.1) the parameters 1", B1, and 62

are complex numbers with positive real parts and small positive phase angles,

which heuristically account for dissipative processes. In the absense of

dissipation, P vanishes and (B1 , 82 ) are positive definite numbers. The

parameter a in (2.1) which is the coefficient of the first derivative '(z),

is real and positive, 0 4 a < -, and plays a dominant role in the entire

development of the present paper. Thus, when a = 0 we recover Budden's

equation; when a = I we observe that (2.1) becomes the self-adjoint analogue

of the Budden problem, and when a varies over the whole range, 0 < a < -, we

encounter the periodic variations, as functions of a, of the retlection and

transmission coefficients pointed out earlier in Ref. I and to be derived

rigorously in the sequel. Note that, as a matter of notation, we employ in

(2.1) the parameter P in lieu of the parameter V appearing in Eq. I or Ret. 1.

The main purpose of this paper is to present, for the infinite domain,

-< K z < -, the analytic and asymptotic properties ot the solutions to our

basic equation. To this end we introduce in (2.1) the tollcwing notation:

w i , = 2B (z + iF) ; (2.2

S o + i732/2, 3o I2 • (2.3)

P.4.J
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We recall, from the definition (2.2), that in the absence of dissipation the

parameter 62 becomes positive definite and the parameter F vanishes. Hence,

in this limit, = 2B2z is a real number. Further we recall that in the

infinite domain, -< K z < , we have arg z = 0 when z > 0, and arg z = f when

z < 0, the latter statement being a consequence of causality as embodied in

the general definition r = 282 (z + iF). Thus, in the presence of dissipation

both 62 and F are complex numbers with positive real parts and (small)

positive phase angles; that is = Je i , 2 = I6 le i 2 , where 0 4 8, 62 <<

7/2, from which it follows that, in the general case, arg + 62, (n + 62)

as z * .

Furthc~m-re, in what follows, we propose to use w as the independent

variable and we shall encounter that the multivalued functions that emerge

will be expressed in terms of ±w = ±ir. Thus, at this juncture it becomes of

interest to ascertain the ranges in arg(±ti) which correspond to the princi-

pal branch of the functions in question. For the purpose we assume initially

the absence of dissipation, which means that = 2 62z is real and covers the

infinite domain -< < , with arg . = 0 when F > 0 and arg = i when < 0

as shown in Fig. 1, just as in the case of z in the previous paragraph.

First, to determine w = i we swing the real axis in the plane through an

angle of ir/2 in the counterclockwise direction about the origin $ = 0, which

makes w = i coincide with the axis of imaginaries as shown by the dashed

line. This procedure shows that the cut in the complex , plane must be drawn

along the negative imaginary axis, and we deduce that the principal branch for

a multtvalued function of w = iF is given by the range

-1/2 < arg (1) 3T /2 . (2.4)

.4
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Then, to determine -w = -i we must now swing the real axis in the plane

through an angle of w/2 in the clockwise direction about the origin of coor-

dinates, which makes -w = -i. coincide with the axis of imaginaries as shown

by the dotted line. Hence, the cut in the complex plane must again be drawn

along the negative axis of imaginaries, exactly as before, except that this

time we deduce that the principal branch of a multivalued function of -w=

is given by the range

-Ir/2 < arg (-iE) < 37r/2 , (2.5)

which should be contrasted with (2.4). We observe in Fig. I that the cut

along the negative axis of imaginaries separates the dashed and dotted

segments in the lower half plane of w = iE and -w = -iE, respectively, and we

note that the corresponding segments in the upper half plane actually coin-

cide with each other.

In the presence of dissipation, as we have already seen, we have

= 2S2(z + ir), where a2 and r are complex parameters, and asymptotically

(jzj + -) this definition becomes -
2 62z. Confining our attention to

positive values of z, 0 < z < -, we compute the complex numbers w = ±i , which

are shown in Fig. I by two black dots equidistant from the origin and lying

on a straight line inclined at an angle 62 = arg B2 with respect to the axis

of imaginaries. We observe that the transition from w in the upper half plane

to -w in the lower half plane, or vice versa, is achieved by the semicircle

drawn to the right, which conforms to the convention

(-w)a = wa ei~a, : = sgl Re{w}, (2.6)

where a is an arbitrary coefficient. In Fig. , the point w is such that

Re{w} 4 0 and Im{w} > 1); that is, w is a positive ptirp Imaginary (92 =J) or

a.
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else lies on the second quadrant of the complex plane, with corresponding

statements for the point -w on the lower half plane.

Thus, in making use of w = ic as the independent variable in (2.1), we

obtain, writing Y(w) instead of t(z), the generalized equation

w Y"(w) + aY'(w) + (iS o - w/4) Y(w) = 0 (2.7)

which we proceed to solve in terms of confluent hypergeometric functions.

Putting Y(w) = e-W/ 2y(w), it is found from (2.7) that y(w) satisfies the

canonical form of Kummer's equation

w y"(w) + (b - w) y'(w) - ay(w) = 0 (2.8)

with parameters

a = ct/2 - iBo, b = a, b - a = a/2 + i o  (2.9)

Two linearly independent solutions of (2.8), valid for all possible values of

the parameters (a,b) are 
4

Y 5 (w) = U(a, b; w), y7 (w) = ew U(b - a, b; -w), (2.11))

in which U(a, b; w) is a multivalued solution to Kummer's equation for which

the principal branch is usually taken as -n < arg w < IT. Consequently, a

- fundamental set of solutions of (2.7) is given by

qp
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Y-(w) -e-W 2
v (w) .- w  2 1'(a, h; w) =2-w/2 U(a/2 - igo, a; w); (2. 11)

. Y+(w) e-W/ 2v7(w) t2 2 V(n - aI," - w) =w2 U( a/2 + i a; - w) (2.12)

in which the latter torms appi.' specitically to thc parameters defined by

(2.9). It is noteworthy to point out that these parameters (2.9), and the

corresponding solutions (2.11) and (2.12) satisty the transtormation

a - b - a, b -* b, w - -w; (2.13)

that is, Y-(w) as given by (2.1l) can be turned into Y+(w) as given by (2.12),

or vice versa, by merely applying the transformation (2.13).

For brevity in writing, it is convenient to introduce from (2.9) the

parameters

a+ = a/2 ± i~o, b =t, (2. 14)

with the aid of which the solutions (2.11) and (2.12) become

Y-(w) = -w/2 LI(a_, cl; w) arg (w)j < TT; (2.t5)

Y+(w) = ew/2 U(a+, a; -w) arg (-w)I < n, (2.16)

which the reader will recognize in Ref. 1 as qs. (5) and (4), respectively.

It is readily verified that the parameters (2.14) and the solutions (2.15) and

(2.1h) satisfy the transformation (2. 13), i.e., a+ - a-, a 4-+ 1, w * -w,

which, with w = it, implies that (2.13) can he condensed into a single

rever-,ible transtormatIion i - -i, wherever i appear-; explicit lv.

%.A -A
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3. '[he Role of Whittaker 's EqultlIon

In the sequel we shall otten rind it more convnient to dea01 with Lile

complex independent vat bhle 2B-=(z + i7), as derined by (2.2) than with

the independent variable w = i,. Accordingly, writing Z( ) instead or Y(ic)

inl (2.7) yields

( + '( ) + (C/4 - B) Z(,) = 0. (3.1)

We can show that (3.1) is related to Whittaker's equation by putting

z/) = - u( (3.2)

where u(s) satisfies the Helmholtz equation

+ Q(.) u(0) U, (3.3)

in which

= 1/4- / + m(2 - )/4 2 (3.4)

plays the role of an effective potential and is real in the absence ot dissi-

pation; that is, when 0 = in (2.3). It is clear from (3.4) that, when a t

or mt = 2, the two cases exhibit identical potentials dominated in the vicinity

of the resonance ( = 0) by the anti-symmetric term O Un the other hand,

when m differs from these special values, a significant change develops near

the resonance. 'This Lime, for U < a < 2, it acquires a symmetric term that

-2hehavc. ts and tor 2 K K 2 toe symmetric term becomes It appelr,

thiat the prtc--ence ot the first derivative in (3. 1) is re [ponsible tor thlis

oditication ot the potential Q( ) in the vicinitv of the resonance anid is the

principal reason tot the anomalous retlection properties mentioned in Her. I

rd ini the Introduction, pronerties that we demonst rate rigorouIslv in the

,4 eql .'
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'n uite geru.liv we ohserve that, when a 0,2, the equation h(i) : h has

nlv ne root, namely + = -, which is the classical cutofr in Budden's

etuItlon. When ax is difterent from these two special values, the equation

() = is i quadratic and has two distinct roots, ._ and +, the intercepts

or the corresponding curves. It we assume that j801 is large or, more

precisely, that 143 2j >> ;c(a- 2), we deduce that the intercepts are given

"- -approximately by

-a(a -2 )/4 3 o; r+ 48o + a(ct - 2)/430, (3.5)

which satisfy the general conditions for the roots of a quadratic,

++ 4x0 x a(2 - ), (3.6)

and which tell us that, under the present assumptions, the cutoff point at

+ = 43o (for ax = 0,2) is shifted only by a relatively small amount as a is

changed. Conversely, we notice trom (3.5) that the cutoff _ is relatively

small but greatly dependent on a. Finally, we observe that, when a = 1, which

co)rresponds to the self-adjoint analogue of the Budden problem, '_ acquires

its maximum value, 1/43o, while + its mininum, 4 - 1/48o, statements which

imp I; that 3, is issumed real.

To illustrate the essential teatures discussed in the preceding para-

graphs we present in Fig. 2 the curves for 0(j), as given by (3.4), assuming

tor the moment that 3) is real In this way we obtain, putting B, I tor

S. cveni ence, the ciirv.,s correspondi:g t -t ,., ; I 1, and a = 3. We observe

that the tran'- in Tron the ca,,' x - 0,2, to either the intermediate region

-<* 2 r LO th,. extend-l dmai' 2 . , is non-uniform. Finally, we

wish to re -all that the mai n thesi-s ot Lhe. preseent paper is the enhanced

04
.............................. ...... .. .- ..- °. ... - -°,, -

-. - - . : "- - . - - _ -. ". . -"" - J . - * J '.'* . '
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reflection that we observe in certain periodic bands in a, in which it appears

that the vicinity of the resonance at r = 0 is stimulated to emit waves

spontaneously. To the best of our knowledge there is no intuitive way of

extracting this periodic behavior from a study of Q( ) from the curves of

*Fig. 2 or analytically from the definition (3.4).

Having studied the behavior of the function Q( ), it becomes of interest

to examine the small argument leading terms of the solutions (2.15) and (2.16)

which we rewrite as

Y_(i ) = e±i /2U(a+, a; ) (3.7)

where, it is recalled, a+ = a/2 ± i~ o and iC = 212(z + iF) = 2iB2z - 2B2F,

with 128 2FI << I. The exponentials in (3.8) thus become

e ir/2 = e BZ B2- .... . 2 + .. (3.8)

e 0 > e = I;B 2  .
z +0

which, because la2FI << 1, may be equated to unity in a small argument (z + U)

expansion. Consequently, we need only look at the Kummer functions in (3.7).

Thus, when a is not zero or an integer (i.e., a # 0,1,2,...), we express

U(a+, a; Pit) as a linear combination of Kummer functions,6 namely:

U~a4  a;~i~)- r( i - a)
U(a+, a; r(a+- a + 1) M(a_, a; ;ir)

+ r(a- 1) (Pi )l- a M(a+-a+l, 2-a; Tir). (3.9)r(a+)

To obtain the small agrument expansions for these values of a we replace the

Kummer functions on the right of (3.9) by unity, which is their leading term,

to obtain

SI

?i i" ' .- '". " - V - . . .- " . "..-"- -. .. ...- '. ,--- ,'-'. - .":'""" -- ""
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F(1 - ci) +F(, a- 1) (Fxi C_ (3. 10)
- + ) P(a+)

from which we deduce,

for 0 < a < 1: Y+(i,) ( - + ) (3.11)
7( +-ot + 1)

for 1 < ot < -: Y±(i ) 'Na(3 ) (;i)1-(r(a+) ( .I

which show that the leading term (3.11) is a constant (independent }f r),

whereas the terms (3.12) behave as reciprocal powers ot (ii).

When a = u,1,2,..., the formula (3.9) diverges, and we must resort to a

limiting process that leads to the so-called logarithmic case.b Thus, it we

put a = n + I, n = 1,2,..., whence a. =7 (n + 1) ± i3., the small argument

leading term becomes

(n - 1)'
U na+, n + 1; i) F(a_.) (i )-n , (3.13)

from which we deduce, for

a 2, n = 1, a+ I iBo; Y+(i ) (F(at)  ( )- I  , 3.14)

in full agreement with (3.12). However, the same formula yields

2+ i •y+(i) - i n(3.

ci= 0, n = -I, a+ = -t i31o; Y+(i- ) -r-'-a---- '  + ( i) Zn (i)' (3_.16)

which are the logarithmic results mentioned earlier that cannot be obtained

from (3.12) and do not blend smoothly with the values obtained tor the range

6< < 1.

",.' ,''. .' :. ".; '-- .. .5 . .- '- "V ..-. ' . '. '. V -, . '- " "- " -'' - - ' - -' .i -- .
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. The Method or Integral kepresentations

To obtain integral representations of the solutions, we introduce the

Laplace kernel K( ,t) = t
i
l and apply to (3.1) the standard procedures

/ that

abide when all the coerficients of the various terms ot the difterential

equation are at most linear functions of the independent variable. Thus, we

assert that the integral representations of the solutions of (3.1) may be

written as

Z( ) = A e (t -i) (t + I a_-1 dt (4.1)
C

where A is an arbitrary normalization constant to be determined a posteriori,

a+ and a- are the parameters of the problem as defined by (2.14), and C is a

suitable path of integration in the complex t plane, which must be chosen to

conform with the bilinear concomitant

L a+ (E a- irt
P( ,,t) = A(t - 2e . (4.2)

That is, the contour C must be such that P( ,t) returns to its primitive value

after t has described a closed circuit, or else the path of integration is

drawn between definite limits such that P( ,t) vanishes at each limit. In the

sequel, we assume that the cuts in the complex t plane are chosen along the

real axis; they extend from t = 1/2 to , and from t -1/2 to -=. The

branch points at t = ±1/2 cannot be connected to each other by a single branch

cut because the coefficients of the two binomials in the integral (4.1) are

different from each other. The reader will readily recognize that (4.1) and

(4.2) reproduce Eqs. (8) and (9) of Ref. 1.

We have adopted for convenience the latter procedure (the use ot t ixed

limits of integration) noting that the bilinear concomitant (4.2) vanishes at

04
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the branch points t = ±1/2, provided we have Re{a+ > 0, which excludes

Budden's problem (a = 0) that we treat properly later. We also note that

P - 0 as Iti + along a ray inclined (with respect to the axis of reals) at

an angle (-7 - ), where t satisfies the condition8

- + < arg < -f + ,(4.3)

that guarantees the convergence of the integral (4.1) as Itl grows without

i7t T
limit; for example, when P = 0, we have - < < arg < -f, which includes

iT 3 -f
arg = 0, and when k = i, we obtain K arg < , which includes arg 7 = .

In fact, in the bilinear concomitant (4.2), we choose arg {i:t} = n, which is

tantamount to choosing the path of steepest descents, from which we deduce

asymptotically, with arg t - 7- 4, that $ = arg . Likewise, we observe that

(4.3), provided only that the range of i is properly chosen as shown below,

guarantees the basic condition

0 < arg < i , (4.4)

which follows from (2.2) and subsequent discussion in the limit of vanishing

dissipation, i.e., = 2B2 z is real.

Accordingly, we define the function Z+(E) by means of the rectilinear

integral representation

/2+ -i )a

Z+( ) = A / e a(t - + (t + -) - dt , (4.5)
1/2

I I
which starts at t = - and proceeds to infinity along a ray inclined at an

angle -% with respect to the axis of imaginaries, where $ satisfies the range

0;
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- < < - (4.6)

which contains $ arg = 0 and = arg = i in accordance with the require-

ment (4.4). In addition, we observe from (4.6) that, in varying $ about t = --

the rectilinear path of integration does not encroach upon the other branch

point at t = - If were to be increased beyond the limits stated, it would

become necessary to make the path of integration circle the branch point at
I

t = - with an additional contribution to the answer which does not belong

in (4.5). Then, if we substitute the specified limits (4.6) into the values

of $ in (4.3) we find for arg E the permissible range -7 < arg E < 27, which

contains symmetrically the basic condition (4.4). Finally, subtracting 7

from each term of the preceding set of inequalities we obtain the result

3T 3w
- -< arg (-i ) < '--, which comprises symmetrically the customary principal

branch -it < arg (-i) < n for the function U(a+, a; -iE) that we associate

with (2.16) and (4.5). However, as demonstrated in Fig. I and accompanying

discussion, the argument range for the principal branch of multivalued

functions of (-iE) is given by (2.5); that is, -n/2 < arg (-i) < 37/2, which

is the range we shall adopt henceforth for the Kummer function U(a+, a; -iE),

and which contains the range -7/2 < arg (-ia) < n/2 that corresponds to

(4.4).

To evaluate the integral (4.5), we change the variable of integration

from t to u by putting

irt = i (t - + I) = i /2 + i (t - ) i,/2 -u,

where -u =eiru (4.7)

iI L it I u
e u = i (t - ), t - = e u/is; t +7 = I -

.2

.2- . ~ 'C .0' ' ' - ~a - -. '.C'.'
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dt = (ei'7/i )du; (4.8)

I -i U i(arg - ()tu=0t 2+ -i Jule .1 e  , (4.9)t -i-, u- 0; t - - +i~e , u - luje -"j j
|2

which states that the upper limit in (4.5) tends to -eiB, where = arg -

and, according to (4.3), 3 is an acute angle, positive or negative,

-( 5<- (4.1u)
22

To proceed with the evaluation of the integral, we insert (4.8) and (4.9) into

(4.5) to obtain

18
Z+(l) =A (ei/i)a+ eir/ 2 r e -u ua+- (1 ) a du

0

= Ar(a )e i / 2 U(a +;-iO

AP(a )e i/2( )-a+ 2 F 0(a+, - a; (4.11)

where the result in the second line stems directly from (2.16) and states that

Z+( ) in (4.11) is proportional to Y+(i ); that is, Z+( ) = AP(a+) Y+(i ),

4 where the constant of proportionality, AI(a+), arises from the integral
4

representation itself. The last form in (4.11) is deduced from the first

line, where the integral representation makes use of u in (4.7) as the

variable of integration. Thus, expanding the binominal (I - u/i )a-- I into a

partial series plus a remainder; interchanging the order of integration and

summation, and integrating term by term, we obtain, according to Watson's

Lemma, 9 an asymptotic series in the sense of Poincare, which is condensed in

the last form of (4.11). Here, the function 2 FO is a genera1lzed hyper-

geometric series written in Pochhamer's notation as modified by Barnes. 10  It

A.

I
4
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represents symbolically an asymptotic series in reciprocal powers of (17) that

must be terminated after a finite number ot terms tollowed by a remainder. It

* is recalled that in such series, the remainder is ot the order ot the tirst

discarded term, and that the ruinctions 2Fi( have unity as the leading term.

Comparing the last two torms in (4 .11) leads to the asymptotic relation

U(a+, (1; - t;,) ( - , , a+ ,  - ; ) 4. 12

which apparently Was tirst noted by Erdelvi in his definition ot the

corresponding Kummer tunction. 1

Similarly, the companion tunction Z-(-) is detined by means ot the

rectilinear integral representation

-1 2+ie - i  (4
i I't 4 a  - i -

Z_ Ae (t - ) + (t + -) - 13)
-1/2

which starts at t = -1/2 and proceeds to infinity, as before, a long at ray

inclined at an angle -p with respect to the axis ot imaginaries, where $

satisties this time the range

7T < < '(4. 1-4)

which has been so chosen because it contains = arg i) and arg g. =

in accordance with the requirement (4.4). however, thil.- time, when tht

rectilinear path of integration is rot ated about t = -1/j"2, sy t tom p 7 t,

= U, it becomes necessary to make tihe 1 itth ot lilt egr.ttn c r, I t he hr nch

point at t 1/2, giving rise to an idditiL L)al i,,ntrihit iII whti'h i l lt

contained in (4.13) and which is part (.t the proct,.'s it , tlvt , o t I l l ,t i ll

a matter to which we rettlrn il n ;tt 1il h whei wt, id I I - t l' i, t r, rii,,, 1 ,11-

ref lection problems that we seek to sof v,.. Pr. ctdin'1 ,l h t' , II Wt'

0''.
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substitute the specified limits (4.14) into the values of $ in (4.3), we find

for arg 4, the permissible range -3fr/2 < arg r < 37/2, which contains the

basic condition (4.4). Finally, adding 7r/2 to each term of the preceeding set

of inequalities, we obtain - < arg (i) < 21, which contains the principal

7T 3 TT
branch - K arg (I) < -- for the function U(a_, x; it) that we associate with

(2.12) and (4.13). Notice that this range contains-7 < arg (i) < - , which

corresponds to (4.4), and that it agrees with (2.4), as demonstrated in Fig. I

and accompanying discussion.

To evaluate the integral (4.13) as before, we change the variable of

integration from t to u, but this time we put

I I I
Si~t = i,(t + - -) = -it/2 + i r( + ) -i/2 u,

i Tr
where -u = e u; 4.15)

n jT I +~ 1
e u = i;(t + 7), t + = e u/i-; t - e (1 +

dt =(eint/i )du; 4 6

1 = 1 -i1 i _ i I i(arg -t)
t = -- 0; t = -- +i-e , 

= ule mle 4.17)
2' 2 ~~e(.7

which implies that the upper limit in (4.13) tends to ei3, where B arg { -

is an acute angle, positive or negative. Thus, proceeding as before, we have

from (4.13)

me
S(.)= Ae ( a -1 ) 1 a_ -i /2 fe a + )a d.e e e u l+ du

AeiI($ - ) (a-)ei '/2 U(a-, a;-i F)

il(Q-l) -i F/2 a-a. F (Ae i'(a_.)e 2F0(\a-, I - a+; - -"),(4 8

' , . . . . . . . .. . . . .. . . . .. -. . . . - -. . - .. - - . -. • -. .4. 18). - . . - - v -
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where the expression in the second line stems directly Itrom (2.15) and states

that Z-(&) in (4. 18) is proportional to Y(ir), that is, Z-( ) =

AeiT(c-I)r(a)Y(i ), where the constant of proportionality, AelT(I-l)P (a),

arises from the integral representation itself. The last form in (4.18) is

deduced from the first line employing the same methods that led to (4.11).

Here, again, the function 2F(j is an asymptotic series in reciprocal powers of

(i,), whose leading term is unity. Finally, comparing the last two results in

(4.18) leads to the asymptotic relation

U(a, a; i:)- (i) -a - F(a-, I - a -, (4.19)2F - a , -. ,(. 9

which should he contrasted with (4.12), and which again is due to ErdeLyi's

formulation.1 1

To determine the constant A appearing in (4.11) and (4.18), we demand

that the functions Z+( ) and Z( ) satisfy the reversible transformation

(2.13). That is, in accordance with the last sentence of Section 2, we demand

that Z+( .) = Z(F) and Z() = Z+( ), where a bar over a symbol signifies that

we have imposed the reversible transformation i ++-i, wherever i appears

explicitly. Thus, since the normalization constant A is arbitrary, we put

*-ir(a-1)/2 (.0
A e ,(4.2(0)

which, when inserted into (4.11) and (4.18), yields the results

Z+( = e-in(a - +)/2 P(a+)ei /2 U(a+, a; -ii)

e P(a )e ( 2 ro(a+, 1 - a_; i ; (4.21)

.4.'

A .I'.V '.N?.
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.,ir/2

(,) = e " (a_)e U(a_, CE; i )

-. ~~~~ V~(i1/ -/2.-a-
- .e (a )e -  (i ) 2 F(a, I - a -- ) (4.22)

that clearly satisfy the reversible trausformation i + -i.

When a = 0 in (2.1), we recover Budden's equation, and the parameters of

the problem become a+ = - is., which means that the integral representations

(4.5) and (4.13) cannot be used because the restriction Re{a+} > 0 is being

violated. To obviate this difticulty, we make use of the identity 1 2

U(a,O;w) = wU(1 + a,2;w), (4.23)

which allows us to write down the required solutions for a = 0 with the aid of

(2.16) and (2.15), respectively. Thus, we have

4, ) i /2U -

Z ( ) = - iP(l + is )e ; -iO)
+ UiB,+ 0 0 -

:'-'- ) i /2
= -it(1 + iS )e (-ic)U(l + is 2;-tic)

o o

.'-)i /2 )-15g -

-ir(l + iS )e (-i 0 F (1 + , i • (4.4)
o 2F0 0 0 -

04

P
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Z_(m) ir(l - iS )e - i ; / 2

- U(- oir/2
= iP(- iS )e (iE)U(l - iBo, 2; il)

)e-iE/2 is [ 4.
i( 0 )e (i) 0 2 F 0 (I - iSo, -iSo; -- ) ; (4.25)

which should be contrasted with their counterparts (4.21) and (4.22) valid for

a > 0, and in which we have made use of the Erdelyi asymptotic relations

(4.12) and (4.19), respectively.

The most important results of the preceeding paragraphs are illustrated

graphically in Fig. 3. Thus, Figs. 3(a) and 3(b) depict the t plane and

emphasize the rectilinear half-ray paths of integration for the functions

Z+(r) an Z_( ), respectively, which we have chosen to draw, in the absence of

dissipation, parallel to the axis of imaginaries. That is, making sure that

tn both cases the causality condition (4.4) is preserved. This is

AcCom ' ished by exhibiting the points = arg r = 0 and = arg T = r on the

paths ot integration, and joining them by semicircles drawn to the right of

the vertical axis as part ,ot the unit circles which correspond, respectively,

to the limits (.4.h) and (4.14). Figs. 3(c) and 3(d) represent,

respectively, the full argument ranges tor (-i ) and (i ), which are the

arg,ments appearin g in Z+( ) and _( .). In addition, the portions ot the

pi ra Is drawn with t hic'. i ,es represent the respect ive rage s c,)rrespoIndl g

t ,(4.a), i.e., ar, . TT. In the presence If dissipation, as shown in

(2.2) anrr hnhseuvnt liscrisi In, the basic argument range (4.4) becomes, as

Z g r ws without limit, . The grms

% r .< 2+~Wer 2=agdarm
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* *Df Fi.gs 3( C and 3d) can be readily adjusted by s imulv advancin~ the thick
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. Asymptotic Leading Terms

In this section we are concerned with the tabulation of the leading term

asymptotic expansions, expressed as functions of i = 2iB 2 (z + i") and

eventually as functions of the physical independent variable z, -- < z < 0, as

was done in Ref. 1. The former objective is achieved by replacing the

functions 2FO by unity. Thus, from (4.21) and (4.22), we have the asymptotic

leading terms with simplified normalization factors:

Z+( ) - '(1-i) ~a)e ij/2(- -a+ (5. 1)

1 Nla )e (-ii)-a

Z () -(1-a),~ )-iU/2(i,)-a-, 52
.(a-)e(5.2)

which are valid for the parameters a, = - -t iS and a > U. In the case of

, Budden's problem, we obtain the asymptotic leading terms

-L ( )2-iF( + i0 )ei $/ -i )
- i

o (5.3)
S+ 0

kI,

7 ([) ie(l - i1 )i2(i q)io (5.4)
0

in both pairs of equations the adopted notation means that the subscript plus

in 7( :) is associated with progressive waves, whereas the subscript minus in

*,_(i) with regressive waves. This wave character of the preceeding .olutions

is evident asymptotically; i.e., for iilI>> 1, where, it is recalled,

='22(z + i7) in which B2 and F are complex parameters. In the absence ot

dissipation, 32 is real and positive and F vanishes; therefore in this case,

- 2d z is real.

r
i'go
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First, we examine to what extent the presence ,u dissipation aftects the

asymptotic leading terms listed before, especially as regards the powers of

,. (Oi). For the purpose, we assume temporarily that z = Jzj, which is positive

definite, and define from (2.2)

2 1zj, - 2 ,(5.5)

which makes a complex number with positive real part and small positive

phase angle; i.e., lmi >U because arg = arg %. With this understand-

- Ing, e.g., the computation of the power (ir)- a, where a is an arbitrary

exponent, real or complex, becomes

-a - aa )-a

= (iC)-a ?[ + aD. + -.. (i )a (5.6)

which is valid to lowest order in reciprocal powers of (i) because n = 232B

2

-" is a constant. Finally, according to the definitions (2.2) and (5.5), when

A- z > 0, we have r = ?5, and when z < 0, then =

- Next, we recall that the confluent hypergeometric functions employed in

9.4 (4.21) and (4.22) for a > 0, as well as their counterparts (4.24) and (4.25)

for a = 0, are multivalued functions. Their principal branches, as

demonstrat, in Fig. I and accompanying discussion, are given by (2.5) and

CA (2.4), respectively, which accounts for the adoption of the convention (2.6),

and which for our purpose we rewrite here as follows:

(-w)C = wce-ilc, c = sgn{Imw} (5.7)

where c Is an arbitrary exponent. We prupose to apply this rule to compute

% r

04

... . *a i ~
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the powers (-i)a+ and (i) -a- which appear in (5.1) and (5.2). Thus, when

Imfilr} > 0 in (5.1), we have E = 1 and (-i )a+ + according to (5.6),

whence

S(1 )a iTa+ e iTa+ i7T(a/ 2 + iao) C, -()

--+ea e =e = e , (5.8)

and when Imfit} < 0 in (5.1), we have simply (-i) - a + (i)-a+. Similarly,

when Im{i ) > 0 in (5.2), we have (i) - a - _ (i)-a - , and when [m(ir} < 0,

we have E = -I and (i )-a- _ (-iZ)-a-; i.e.,

-a e-ia- e-inra- e-iir(a/2 - ii O ) = i- e-io (5.9)

In (5.8) and (5.9), we still have to compute the powers (is) -a -, where

a+4 2 i3 . Thus, we have

(e) - a +  - a+kn(i ) =e - ( a / 2 + i°)Zn(i) (i) - a / 2 e - i°Zn; (5.10)

( ) -a - = e-a-Zn(i) = e - ( / 2 
- i8o)Xn(.i) - (i) / 2 e - , L 1 2 + io3n . (5.11)

The logarithmic terms in the last exponentials in (5.10) and (5.11), when

combined eventually with e±i /2, are asymptotically ( + -) negligible and

they are frequently omitted. Here, however, we retain the logarithmic terms

for completness sake.

Hence, combining the results of the two preceding paragraphs with our

basic leading term asymptotic expansions (5.1) and (5.2), we may now tabulate

the asymptotic values of Z+(") and Z-( ) for lm(i.} > 0 and Imfir} < O, which

is equivalent to saying z > 0 and z < 0, respectively. Thus, we obtain the

four expressions:

4

a A .i..t.p.'J
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Imfi } > 0; Z+("') ~i I  ~+[a-°2~ ~~-~' (.2)

Im(l < 0, Z+ (-a) a) TS/2 -c2 i i Z5 3

*. Im{ir } > 0; Z_(F.) i -  (a_)[e-o/](r)-"

- 3 71 -

Im{i} < 0; Z() -i(-a) c(a )i-e 3
' 'e I 5._ '+

in which the first two represent progressive waves and the last two regressive

waves. The given limiting forms are valid for all positive values of the

parameter a, 0 < c < -. For Budden's problem corresponding to (5.3) and

(5.4), we put a = 0 everywhere except in the normalization factors were we put

ot = 2 in accordance with (4.23).

To conclude this Section, we extract from the preceeding equations the

spatial dependence of the wave functions of unit amplitude, namely:

I+(t ) (i .)-/2i /2i3° n (M)-a+ei'/2 5.1o)

( 1)a/2 i[/2+ioZn ()a i /2(11)

which e'ually well may be expressed as functions of the real indepenlt nt

variable, -- < z < -, albeit no longer of unit amplit,ide; that is:

€+() ~2i ) - a + jz1-a ei 32 z - 32 ?  
).7

w _(z) -(2132 -a  +-ae,

.

it

0" 4 , - - -. . . . . . .- - . - .. . . , , . ., . . -. .. , , .- , - . .-., . .. .- - . -

• ".,.- ' ..... . r''.-. Z"> . -.. .,,. ,t _. . ... . .' , .- . .., . .,' .'" -'V '"'''' ." , "", '""'" """".". , " '
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which are the functions that supplant the forms given in Eqs. (7) in Ref. i.

It is important to reiterate, for both pairs of equations, that a+ = a/2 -io,

= 2 a?(z + ii), and = 26 2 IzI, where arg arg a2 . 0.

Finally, to conform with the nomenclature introduced in Ref. 1, we

present in Fig. 4 a diagram indicating the directions of propagation of the

four asymptotic leading terms for Z+() and Im{i j > 0, which are associated

with the unit amplitude wave functions (5.16) and (5.17). That is, in the

qpirit of Eqs. (7) of Ref. 1, we have

IM (ig)(a/2igo)e-i /2 ; (5.20a)

" 2( *) ~(i)-(a/2+iBO)e i/2 (5.20b)

3( (i)-(/2+iO) e i /2 (5.20c)

t4M (i )-(a/ 2 -iBO) e-i /2 (5.20d)

It is seen from Eqs. (5.20) that, when a > 0, there is introduced a decaying

"-a/2 a/2(
envelope of the form = (2Bz)°  or conversely, it can be inter-

preted (asymptotically) as an enhanced swelling of the wave form toward the

-2
resonance, which we associate with term in the effective potential (3.4).

It is worth noting that the swelling disappears when a = 0, which is Budden's

*A problem. In addition, it is pertinent at this juncture to emphasize that the

exponentials in (5.20), expf-+i/2} = exp{±iB 2 z a2 }, contain the constant

attenuation factors exp{;B2f1 = exp{(n/2} in accordance with the definitions

(2.2).

%4



%1 The connection that exists between the unit amplitude wave functions

listed in (5.20) and the actual asymptotic solutions Z+(r) that we derived lor

Im{i} Z 0 is as follows: the progressive waves 2() and 03( ,) are contained

in the functions Z+(F.) defined by (5.t2) and (5.13), respectively; similarly,

the regressive waves l( ) and 4(M) are contained in the functions Z_( )

given by (5.14) and (5.15), respectively. The multiplying coefticients in

these equations, as we shall see, are of the essence in the computation ot the

transmission and reflection coefficients that we undertake at once.

V-
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-28-

6. Computation of Transmission and Reflection Coefficients

The computation of the reflection and transmission coefficients associated

with the leading term asymptotic forms for the solutions Z+( ) of our

generalized equation (3.1) is conveniently carried out by resorting to the

integral representations that we derived in Section 4, and by applying the

method of analytic continuation. This means, with reference to Fig. 4, that

we first set up asymptotic transmitted waves of unit amplitude, 2() for

z > 0 or 4() for z < 0 (cf. remarks preceeding (5.12)), and then we proceed

to seek their analytic continuation as z changes sign. In what follows we

shall assume temporarily that = 2B2z is rigorously real and covers the

infinite domain, - < < -. Accordingly, the four half-ray rectilinear paths

of integration defined by (4.5) and (4.13) may be drawn for convenience as

strictly vertical in the complex t plane, as shown graphically in Fig. 3.

First we consider the left to right case of Fig. 4 and then making use of

(4.5), we draw the diagram of Fig. 5, which illustrates the two rectilinear

paths of integration corresponding to Z+(r > 0) with p =0 and Z+(% < 0) with

= ', and indicating that their unit amplitude wave functions are P2() and

3(M), respectively. Thus, as stated in the preceding paragraph, we identify

the linear path of integration for Z+( > 0) as the transmitted wave for

z > 0. The analytic continuation of this solution for z < 0, which is the

incident wave Z+( < 0), is obtained by rotating the half-ray path of

integration clockwise about the branch point at t = I2, as indicated hy the

(directed) semicircle on Fig. 5. This procedure is dik-tatd by the unit

circle in Fig. 3(a), which shows that the transit im fr,)n ,r, to

arg z = is achieved by means of the thick semici r it' to the rivht ot the

vertical. Further, this procedure i:iI, VI' an oxcur-i i nt() another sheet
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of the Riemann surface, which we indicate in both Figs. 3(a) and 5 by

drawing the path for Z+( > 0) as full line, and the path for Z+( r < (<) as

dashed line. The transition from the incident wave ¢3(-) to the transmitted

wave *2(,) is effected by means of an infinitesimal semicircle traversed in

the counterclockwise direction about the branch point at t = 1/2, which

introduces the factor exp(in(a/2 + i3,)} that we identify below as the

reflection coefficient.

Hence, Z+(.,) is its own analytic continuation as we change, the sign ot z,

and in the left to right case of Fig. 4, there is no reflection, a result

also found in the Budden problem (a = 0). Thus, the reflection coefficient

for 3(M) going into 4 (r) vanishes identically for all ', k3 , . To

compute the transmission coefficient T32 from t3(-,) into t4(r) quite

generally; that is, in the presence of dissipation, we first recall from the

discussion that follows (5.20) that the unit amplitilde wave functions (5. h)

and (5.17) now exhibit the attenuation factors et')/ 2 , and then we take the

ratio of coefficient of +(M) = 02(r) in (5.12), the transmitted wave, to the

coefficient of +(M) = t3( ) in (5.13). Hence , taking due accouint of the

attenuation factors just mentioned, we obtain

i(TL- )f(a+) i'e 3o 2 er t~ ie < _ , (0.1)

32 (1-a), v o 73 /21 -n Tr 3 ~3 2

i( - a )e o e e

which is completely equivalent to the t.ict<Jr al reIdy glven, al wi, shws

explicitly the periodic dependence on I thr)ugh the pha-',e talctir i

Thus, for Budden's problem (i U ), we r.c,)vt.r thw we, 1-kllWu rcil

T e ,( h. 2)
32

* -. . - * . .-- .
• - . *. ** -*. .- *. .** *'
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and for the self-adjoint analogue or Budden's equation (a = 1), we obtain

T = ie 8 o (6.3)

Notice that all three values of the reflection coefficient T3 2 given above are

contained in the factor exp(in(ct/2 + i8o)} that arose from the infinitesimal

semicircle about t 1 1/2 when traversed in the counterclockwise direction.

Next, we consider the right to left case of Fig. 4, i.e., the incident

wave i(b ) approaches resonance from the tunneling side (z > 0) and, as we

shall see, gives rise to a transmitted wave O4() for z < 0 and a reflected

wave -(I - e a+) 2(g) for z > 0. Thus, proceeding as before, we make use

of (4.5) and (4.13) to draw the diagra of Fig. 6 illustrating the three

rectilinear paths of integration corresponding asymptotically to the incident

wave Z_( > 0) for 0 = , the transmitted wave Z_(E < 0) for = 7, and the

reflected wave -(l- e )Z+(>)for =0 and =27. We have

identified the rectilinear path of integraton for Z_(E < 0) as representing

the transmitted wave for z < 0. The analytic continuation of this solution

for z > 0 is obtained by rotating the half-ray path of integration

counterclockwise about the branch point at t = -1/2 as indicated by the

(directed) semicircle in Fig. 5. This procedure is dictated by the unit

circle in Fig. 3(b) which shows that the transition from b = arg n =  to

= arg 0 = is achieved by means of the thick semicircle to the riiht of tl,e

vertical. In so doing, however, we cannot ignore the presence ot the branch

point at t = 1/2, with the result that the proposed derormation of the path

of integration yields the incident wave Z_( > U) from (4. 13) with t = U, plu

the reflected wave from (4.5) with b = U and = 27T, which we write a,;

4

- * :-.,. - -.* . . .. .. ......- .- .
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-(1 - e 2i a
+) Z+( >u). Here a+ a/2 + if o is the exponent associated with

the branch point at t = ['2. We observe that the contour ot integration tor

Lhe retlected wave is represented in Fig. 6 by a solid halt-line transversed

downwards, an intinitesimal circle around the branch point at t = 1/2

traversed in the counterclockwise direction, and a dashed halt-line traversed

upwards in another sheet ot the Riemann surtace. We also observe that the

transition from the incident wave function Z_(, > 0) to the transmitted wave

tuinction Z_( , < o) is effected bv means of an infinitesimal semicircle

traversed in the clockwise direction about the branch point at t = -1/2, and

givitn rise to the factor exp{-i7(a/2 - i% 0 )}. Based on the results of the

preceeding paragraph, we identify this factor with T 1 4 , the transmission

,' tticient trom ) into b4(r); that is,

T - 1 U (6.4)

1 thte c'ump[ex ,mijniate o)t (6.1) in the absence of dissipation, when

2 r ,,t I As het )rti, we cO)nsidt'r two cases. For Budden's problem we put

S= . ~ (: { .,. ) t j h Ltu .n

-13
(h.5)

V h h. .tIdd '- resuI t -ifnt i i,lie t ,a[ t ( '). t cr Lt he ,tL t-adjillt

:' gi c , or tiiddt e ina , In, we poot i h 1 : .4) tI yield

.

,,-.------.-----.-. . . . . .. ."- i"-, * i -" -- - - - "- " 1-
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We have shown that the computation of the transmission coefficients T 3 2

and T1 4 emerges quite simply from the contours of integration and does not

necessitate a detailed knowledge of the asymptotic solutions given by the

integral representations. The same statement, however, does not apply to the

computation of the reflection coefficient R 1 2. In fact, we must proceed as we

did originally with the computation of the transmission coefficient (6.1) in

which we included dissipation and, making use of the conclusions following

(5.20), we took cognizance of the fact that the unit amplitude wave functions

(5.16) and (5.17) now exhibit the constant attenuation factors e4+l/2,

respectively. When computing transmission coefficients by taking ratios of

the pertinent coefficients in (5.13) - (5.15), we find that these factors play

no role because they cancel each other. However, this is no longer the case

when computing the reflection coefficient R 12 . Thus, we must include in

addition to the factor -(1 - e 2ia+) shown in Fig. 6, the ratio of the

coefficient of 4(,) = 2(M) in (5.12), to the coefficient of _() =

in (5.14), and we must take due account of the constant factors e 'q/2 , which

arise in the presence of dissipation. In this manner, we obtain

(-a)F() ie - 8o/ 2 ]e- n/2
2" ia+)i ra+ ie l

12 _ 6-0/ )2 ne-O /2

'(e/2+i ) -e 
2 o)

0 r J Tr1 T
Lii2i - e e (0 < a < (6.7)

0 p

which is formally identical to Eq. (10) of Ref. 1, except for the fact that

here = 2 2F, whereas previously we wrote v instead of F. From (6.7), we can

deduce the special case corresponding to the self-adjoint analogue of Budden's

equation by putting c ; 1; that is,

( .. *



I+

R'( 2 9 I + e o -v (0. h)

in which iR 1 ~ > 1 unless n is extremely large. Finially, tor Budden's case

(al = U1), we observe that we may put ai =2,) or else al U, in1 all terms ot

(n.7) to obtain the equivalent forms2

2 - i (-i)

in accordance with Budden's original result, hut now showing the explicit role

or dissipation through the complex parameters B and n . Notice, furthermore,
0

that in (6.9) we have hIa w m Under all circumstances.

The most 7nexpected result of the present investigation is the discovery,

hRbdied in iq. (6.7), that the reflection coefficient 1 2 exhibits an

anormalous behavior as a tunction ot a. To study this efect more thoroughly

and t(, iipLity the computations, we contine tur attention in further remarks

to the case of rio dissipation; this means that in (6.7) BO 1(23

is rtal and -1 22 1. Hence, we deduce that

= + t2  - 2co ( 7)e - ' , (2. T.0)

whi,'h shows that tht square of the modulus of the ret lection coet t 1cierit

.r ', osi ttes pert dica Iv as a is varied, I) K a < -. The smallest

r.tl-cti.,i i i r tor i = 2N N i, 2, which is m i = - e 0

wher..io the axirno ret lecti,n takes place when a = 2N + 1, N = ,1,2,..., and

iatt i - the v;alit maxl K I + e , wich is greater than unity. This

:'.4
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enhancement in the reflection coefficient indicates that there exist bands of

values of a within which the resonance spontaneously emits waves. The onset

for stimulated emission is obtained from the condition

°*." 11T14 12  + JR12j
2  = , (6.11)

from which, making use of (b.4) and (6.10), we deduce the equation

2cos(ai) = I + e 2 T18o (b. 12)

whose roots determine the values ot a at the edges of the emission bands. We

note further that

2 -2 T B

IR2(a)12 JR 2(0) 2 + 4 sin 2(,ir/2)e 0 (b. 13)

which indicates that except for the values a = 2N, N =

corresponding to the minimum reflection, the result of putting C t 2N is to

enhance the reflection coefficient above the Budden value, JR12 (U) 
2 .

In summary, the presence of the first derivative term 0z'(z), 0 < a < +,

in the generalized resonance-tunneling equation (2.1) that we have constructed

from the well-known Budden's equation, can yield both absorption as well as

stimulated emission of waves, depending on the periodic band conditions on a

that we established here. It would be interesting and challenging to find

examples of physical systems where such a behavior occurs.

This work has been supported by the Office of Naval Research.
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